WordPress-Twenty Seventeen 设定仅显示文章摘要

之前首页一直都是显示全篇文章,确实看起来有些难受,这里使用了一个方法魔改了一下主题,令其显示摘要:

在主题的content.php中找到这一段

<?php
	/* translators: %s: Name of current post */
	the_content( sprintf(
	        __( 'Continue reading<span class="screen-reader-text"> "%s"</span>', 'twentyseventeen' ),
	        get_the_title()
	) );
?>

将其注释掉。

改为:

<?php if(!is_single()) {
	the_excerpt();
} else {
	the_content(__('(more…)'));
} 
?>

即可实现仅显示摘要。

不过可能更换/更新主题的时候要重新魔改。正在摸索更有效的方法。

lp2467 SDOI2010 地精部落

这一题的题面很复杂,但形式化地概括则很简单:

对于一个长度为n的全排列,求出其中有多少排列A满足,对于任意i属于n,$$(A_{i}-A{i-1})*(A_{i}-A_{i+1})>=0;$$

然后我们观察排列的特点,我们可以发现,对于排列A中的一个元素\(A_{i}\),我们可以发现,如果\(A_{i}\)是山峰,那么将\(A_{i}\)的值无论添加多少,都不改变这个序列的可居住性;对于山谷,则反之。
于是,我们可以发现,一个合法的排列,如果我们要在它末尾添上一个数让它形成一个新的合法排列,对于除了最后一个数以及这个数是属于山峰以及山谷以外,我们不关心其他的属性。
因此我们可以用\(f[i][j][k]\)表达当前长度为i,最后一个数为j,最后一个数的状态为k的时候的状态数。其中k==0表示山谷,而k==1表示山峰。
则很容易可以得到状态转移方程:
$$f[i][j][k]+=f[i-1][l][k\ xor\ 1](k?(0<l<=j-1):(j-1<l<=i))$$
但是这样子的复杂度是N^3的,对于4200的数据显然是不能通过的。这时候考虑优化。
我们发现求和的东西是一段区间,因此我们可以考虑前缀优化。
这样子就将复杂度从\(n^3\)降低到了\(n^2\),于是可以通过。
但是这样子需要的空间是3E7的,对于128MB的空间是非常危险的,这时候考虑滚动数组优化,这样是可以通过的。

#include<iostream>
#include<cstdio>
using namespace std;
long long n,p,f[4205][2],pre[4205][2];
void init(){
    scanf("%lld%lld",&n,&p);
    int l,r;
    f[1][1]=f[1][0]=pre[1][0]=pre[1][1]=1;
    for(int i=2;i<=n;++i){
        pre[i][0]=pre[i-1][0],pre[i][1]=pre[i-1][1];
        for(int j=1;j<=i;++j){
            for(int k=0;k<=1;++k){
                l=k?0:j-1;
                r=k?j-1:i;
                f[j][k]=(pre[r][k^1]-pre[l][k^1]+p)%p;
//                printf("(%d,%d)[%d,%d]%lld|",l,r,pre[l][k^1],pre[r][k^1],f[j][k]);
            }
//            printf(" ");
        }
        pre[0][0]=pre[0][1]=0;
        for(int j=1;j<=i;++j){
            pre[j][0]=(pre[j-1][0]+f[j][0])%p;
            pre[j][1]=(pre[j-1][1]+f[j][1])%p;
        }
//        puts("");
    }
    long long ans=(pre[n][0]+pre[n][1])%p;
    printf("%lld",ans);
}
int main(){
    init();
    return 0;
}

 

Q:为什么这个方程不会重复统计呢?
如果只关心上一个元素的大小,排列中的元素可能重复出现了。

A:不会重复统计,感性证明如下:

首先我们假定对于上一个A,使得:

$$ |A|==i-1 $$

并没有重复统计。
那么我们插入一个新的元素\(i\)时,产生的新序列必然是 本质不同 的。
我们对于\(A_{i-1}\)是山峰和山谷分别讨论。
如果\(A_{i-1}\)是山峰,那么新插入的元素,必然比\(A_{i-1}\)小,并且一定是由将序列中大等于【某个小于等于\(A_{i-1}\)的一个数\(l\)】的所有数提升一,然后将新插入的元素定义为\(l\)。
这时候,\(i-1\)位上的数是\(A_{i-1}+1\),而\(i\)位上的数则是\(l\)。
在这种情况下,最后两位是\(A_{i-1}+1\)与\(l\)。显然对于每一个本来已有的\(A_{i-1}\),它们在新的序列中都会加且仅加1。
这样,所有新增的组合的最后两位都是 本质不同 的,因此序列本质不同。
对于山谷,情况类同于山峰,同样可以证明不会产生重复的后两位,进而不会产生本质相同的数列。

而对于 $$|A|==1$$ ,结果显然是1,没有重复统计。
从而归纳得出全部都没有重复统计。

LaTeX成功启用

为了能在博客上使用公式,我先后进行了许多尝试。
总之,首先在本地安装MathJax服务。这个服务可以轻松地下载并安装,详见[原创]用LaTeX for WordPress插件在WordPress中写数学公式一帖。

安装的目录正如帖子中所说的,/wp-content/下即可。

然后,在WordPress的商店里面我们可以找到一个名叫MathJex-LaTeX的插件,并将其安装,并在Settings中访问它的设置界面,然后将“Use MathJax CDN Service?”选项关闭,并在“Custom MathJax location?”一项中填写

/wp-content/MathJax/MathJax.js

于是LaTeX环境安装完成。

当我们要使用LaTeX代码的时候,我们只需要用[ latex]代码[/latex ]或者\$\$代码\$\$或\$latex E=mc^2\$来插入LaTeX代码。

Test:

\(E=mc^2\)
$$E=mc^2$$

\(E=mc^2\)