lp2596 ZJOI2006 书架


看到这一题我们就可以想到Splay。
具体来说,这一题要求维护下列四个操作:
将序列中的一个数与它的前一个数/后一个数交换。
将序列中的一个数移到序列头/序列尾。
如果单单如此的话那这一题就太简单了。对于一二操作只需要直接和前驱、后继调换,对于三四操作只需要将左/右子树移动到右/左子树的最左/右节点的左/右孩子。
但事实上并非这样。这一题对序列中数的操作并非是直接给出的,而是对序列中的每一个点编了号,然后每一次访问这个编号。
但仔细思考就会发现,考虑到对序列的操作只会更换位置,
故而,对于这种操作,我们定义一个数组名为loc,储存的是,编号为\(loc_i\)的数在数列中的标号。
要十分注意编号和逆编号的对应关系。以及交换之后对它们原来的关系的影响。

#include<iostream>
#include<cstdio>
#define MID ((L+R)>>1)
int loc[80005],aloc[80005];
class Splay{
	private:
		class Node{
			public:
				int fa;
				int sn[2];
				int sz;
				inline void prnt(){
					printf("(%d,%d,%d)\n",fa,sn[0],sn[1]);
				}
			inline Node(int FA=0,int LS=0,int RS=0,int SZ=0){
				fa=FA,sn[0]=LS,sn[1]=RS,sz=SZ;
			}
		};
		Node tr[80005];
		int rt;
		inline void updt(int X){
			tr[X].sz=tr[tr[X].sn[0]].sz+tr[tr[X].sn[1]].sz+1;
		}
		inline int fndD(int X){
			return tr[tr[X].fa].sn[1]==X;
		}
		inline void splayOne(int X){
			int D=fndD(X),D2=fndD(tr[X].fa);
			tr[tr[X].sn[D^1]].fa=tr[X].fa,tr[tr[X].fa].sn[D]=tr[X].sn[D^1];
			tr[X].sn[D^1]=tr[X].fa,tr[X].fa=tr[tr[X].fa].fa;
			tr[tr[X].fa].sn[D2]=X,tr[tr[X].sn[D^1]].fa=X;
			updt(tr[X].sn[D^1]),updt(X);
		}
		inline void splayTwo(int X){
			int D=fndD(X),D2=fndD(tr[X].fa);
			tr[X].fa?(tr[tr[X].fa].fa?(D==D2?(splayOne(tr[X].fa),splayOne(X),0):(splayOne(X),splayOne(X),0)):(splayOne(X),0)):0; 
		}
		inline void splayRnw(int X){
			while(tr[X].fa){
				splayTwo(X);
			}
			rt=X;
		}
		inline int fnd(int K){
			int P=rt,FP=0;
			while(P){
				FP=P;
				if(tr[tr[P].sn[0]].sz+1<K){
					K-=(tr[tr[P].sn[0]].sz+1);
					P=tr[P].sn[1];
				}else if(tr[tr[P].sn[0]].sz<K){
					return P;
				}else{
					P=tr[P].sn[0];
				}
			}
			return FP;
		}
		inline int fndMn(int X){
			int P=X,FP=tr[X].fa;
			while(P){
				FP=P;
				P=tr[P].sn[0];
			}
			return FP;
		}
		inline int fndMx(int X){
			int P=X,FP=tr[X].fa;
			while(P){
				FP=P;
				P=tr[P].sn[1];
			}
			return FP;
		}
		inline int build(int L,int R,int FA){
			if(L>R){
				return 0;
			}
			tr[MID].fa=FA,tr[MID].sz=1;
			tr[MID].sn[0]=build(L,MID-1,MID);
			tr[MID].sn[1]=build(MID+1,R,MID);
			updt(MID);
			return MID;
		}
		inline void prnt(int X){
			if(!X){
				return;
			}
			prnt(tr[X].sn[0]);
			printf("%d ",X);
			prnt(tr[X].sn[1]);
		}
	public:
		inline void INIT(int N){
			build(1,N,0);
			rt=(1+N)>>1;
		}
		inline void SWAP(int X,int D){
			splayRnw(X);
			int P=D?fndMn(tr[X].sn[1]):fndMx(tr[X].sn[0]);
			int X_2=aloc[X],P_2=aloc[P];
			std::swap(loc[X_2],loc[P_2]);
			std::swap(aloc[X],aloc[P]);
			splayRnw(X);
		}
		inline void LST(int X){
			splayRnw(X);
			int P=fndMn(tr[X].sn[1]);
			tr[tr[X].sn[0]].fa=P,tr[P].sn[0]=tr[X].sn[0],tr[X].sn[0]=0;
			splayRnw(tr[P].sn[0]);
		}
		inline void RST(int X){
			splayRnw(X);
			int P=fndMx(tr[X].sn[0]);
			tr[tr[X].sn[1]].fa=P,tr[P].sn[1]=tr[X].sn[1],tr[X].sn[1]=0;
			splayRnw(tr[P].sn[1]);
		}
		inline int RNK(int X){
			splayRnw(X);
			return tr[tr[X].sn[0]].sz;
		}
		inline int ARNK(int X){
			int P=fnd(X);
			splayRnw(P);
			return P;
		}
		inline void PRINT(){
			printf("%d ->",rt);
			prnt(rt);
			puts("");
		}
};
int n,m;
Splay T;
void init(){
	scanf("%d%d",&n,&m);
	T.INIT(n);
	int x,t;
	for(int i=1;i<=n;++i){
		scanf("%d",&x);
		loc[x]=i,aloc[i]=x;
	}
	char op[10];
	for(int i=1;i<=m;++i){
		std::cin>>op;
		scanf("%d",&x);
		switch(op[0]){
			case 'T':{
				T.LST(loc[x]);
				break;
			}
			case 'B':{
				T.RST(loc[x]);
				break;
			}
			case 'I':{
				scanf("%d",&t);
				t==0?0:(T.SWAP(loc[x],t==-1?0:1),0);
				break;
			}
			case 'A':{
				printf("%d\n",T.RNK(loc[x]));
				break;
			}
			case 'Q':{
				printf("%d\n",aloc[T.ARNK(x)]);
				break;
			}
		}
	} 
}

int main(){
	init();
	return 0;
}