lp3676 小清新数据结构题

仔细考虑这道题,我们可以将问题转化为「修改」和「换根」两个操作。
对于修改操作,我们知道,每个点的权值对且仅对它到根节点上的这一条链上的每个点的答案产生贡献。
我们不妨令以1为根的情况下的每个点的修改前子树权值和为\(a_{i}\),修改对权值的改变为\(dlt\),那么可以计算得:
$$ans’=\sum(a_{i}+dlt)^2=\sum a_{i}^2+2dlt\times a_{i}+dlt^2\times len$$
故而,我们只需要用树链剖分套线段树维护树上区间平方和即可。

接下来我们考虑换根操作。
我们假设根从1换到了\(x\),那么子树权值大小会发生改变的仅有这条路径经过的点。我们不妨令换根后它们的子树权值和为\(b_{i}\),并有1~x为这条路径构成的序列,则我们发现答案会做出如下变动:
$$ans’=ans-\sum_{i=x}^1 a_{i}^2+\sum_{i=x}^1 b_{i}^2$$
我们发现,路径上的相邻点的子树的并集构成了整棵树。这也就意味着:
$$a_{i}+b_{i+1}=a_{0}=b_{x}$$
于是我们可以依此得到:
$$ans’=ans-\sum_{i=x}^1 a_{i}^2+b_x^2+\sum_{i=x-1}^1 (a_{0}-a_{i+1})^2$$
$$ans’=ans-\sum_{i=x}^2 a_{i}^2+(len-1)\times a_{0}^2-2a_{0}\times\sum_{i=x-1}^1 a_{i+1}+\sum_{i=x}^2a_{i}^2$$
$$ans’=(len-1)a_0^2-2a_{0}\sum_{i=x}^2a_{i}$$
同样也可以用树链剖分套线段树维护树上区间和与区间平方和。
注意:树剖不要写挂,下传给重儿子的链顶应该是本节点的链顶。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
#define Fv(i,X) for(int i=h[X];i;i=e[i].nxt)
typedef long long ll;

inline char rdc() {
 	static char buf[10000000], *p = buf, *end = buf;
	if (p == end) end = buf + fread(p = buf, sizeof(char), 10000000, stdin);
	return *(p++);
}

inline int rd(){
	int RT=0,c,f=1;
	while(!isdigit(c=rdc())){if(c=='-'){f=-1;}}
	do{RT=RT*10+c-'0';}while(isdigit(c=rdc()));
	return RT*f;
}

struct ee{
	int v;
	int nxt;
}e[400005];
int h[200005],et=0;
inline void Eadd(int U,int V){
	e[++et]=(ee){V,h[U]};
	h[U]=et;
}
inline void add(int U,int V){
	Eadd(U,V);
	Eadd(V,U);
}

int n,q;
ll val[200005],sm[200005];
int fa[200005],dep[200005],tp[200005],sn[200005],sz[200005];
int dfn[200005],loc[200005],cnt=0;

inline void dfs0(int X,int FA){
	dep[X]=dep[FA]+1;
	fa[X]=FA;
	sz[X]=1;
	sm[X]=val[X];
	Fv(i,X){
		if(e[i].v==FA){
			continue;
		}
		dfs0(e[i].v,X);
		sz[X]+=sz[e[i].v];
		if(sz[e[i].v]>sz[sn[X]]){
			sn[X]=e[i].v;
		}
		sm[X]+=sm[e[i].v];
	}
}

inline void dfs1(int X,int TP){
	loc[dfn[X]=++cnt]=X;
	tp[X]=TP;
	if(sn[X]){
		dfs1(sn[X],TP);
		//这里下传的应该是TP而非X...
		//树剖写挂了,我SB 
	}
	Fv(i,X){
		if(e[i].v==fa[X]||e[i].v==sn[X]){
			continue;
		}
		dfs1(e[i].v,e[i].v);
	}
}
#define MID ((L+R)>>1)
#define LS (X<<1)
#define RS (X<<1|1)
#define LEN (R-L+1)
#define LLEN (MID-L+1)
#define RLEN (R-MID)
struct data{
	ll sm;
	ll sm2;
	ll lzy;
}tr[2000005];

inline void rnw(int X,int Len,ll K){
	tr[X].sm2+=(K*K*Len+tr[X].sm*K*2);
	tr[X].sm+=(Len*K);
	tr[X].lzy+=K;
}
inline void pshd(int X,int L,int R){
	rnw(LS,LLEN,tr[X].lzy),rnw(RS,RLEN,tr[X].lzy);
	tr[X].lzy=0;
}
inline void updt(int X){
	tr[X].sm=tr[LS].sm+tr[RS].sm;
	tr[X].sm2=tr[LS].sm2+tr[RS].sm2;
}
inline void chg(int X,int L,int R,int A,int B,int V){
	if(L>=A&&R<=B){
		rnw(X,LEN,V);
		return;
	}
	pshd(X,L,R);
	if(A<=MID){
		chg(LS,L,MID,A,B,V);
	}
	if(B>MID){
		chg(RS,MID+1,R,A,B,V);
	}
	updt(X);
}
inline ll qrySm(int X,int L,int R,int A,int B){
	if(L>=A&&R<=B){
		return tr[X].sm;
	}
	if(L>B||R<A||B<A){
		return 0;
	}
	pshd(X,L,R);
	return qrySm(LS,L,MID,A,B)+qrySm(RS,MID+1,R,A,B);
}
inline ll qrySm2(int X,int L,int R,int A,int B){
	if(L>=A&&R<=B){
		return tr[X].sm2;
	}
	if(L>B||R<A||B<A){
		return 0;
	}
	pshd(X,L,R);
	return qrySm2(LS,L,MID,A,B)+qrySm2(RS,MID+1,R,A,B);
}
inline void build(int X,int L,int R){
	if(L==R){
		tr[X].sm=sm[loc[L]];
		tr[X].sm2=tr[X].sm*tr[X].sm;
		return;
	}
	build(LS,L,MID);build(RS,MID+1,R);
	updt(X);
}

void init(){
	n=rd(),q=rd();
	int u,v;
	for(int i=1;i<n;++i){
		u=rd(),v=rd();
		add(u,v);
	}
	for(int i=1;i<=n;++i){
		val[i]=rd();
	}
	dfs0(1,0);
	dfs1(1,1);
	build(1,1,n);
	int op,x,y;
	ll ans,a0=sm[1],sma,len;
	for(int i=1;i<=q;++i){
		op=rd();
		if(op==1){
			x=rd(),y=rd();
			y-=val[x];
			val[x]+=y;
			a0+=y;
			while(x){
				chg(1,1,n,dfn[tp[x]],dfn[x],y);
				x=fa[tp[x]];
			}
		}else{
			x=rd();
			len=sma=ans=0;
			ans=qrySm2(1,1,n,1,n);
			while(tp[x]!=tp[1]){
				len+=dfn[x]-dfn[tp[x]]+1;
				sma+=qrySm(1,1,n,dfn[tp[x]],dfn[x]);
				x=fa[tp[x]];
			}
			len+=dfn[x]-dfn[1];
			sma+=qrySm(1,1,n,dfn[1]+1,dfn[x]);
			printf("%lld\n",ans+a0*(len*a0-2*sma));
		}
	}
}
int main(){
	init();
	return 0;
}

lp2664 树上游戏

一种\(n^2log^2n\)的做法是可以想到的:点分治,使用multiset来维护以某个节点为根的某一些链上的颜色信息。合并的时候\(O(nlogn)\)合并。
我们略微计算了一下复杂度,感觉这是卡不过去的。

仔细想想我们发现计算一条路径上不同的颜色数量是较为困难的,故而我们可以转而统计不同颜色对\(ans_i\)的贡献。
我们仔细思考,发现,对于以一个点\(rt\)为根的子树的某个点\(i\),其颜色是从\(i\)到\(rt\)的路径上首次出现的,那么我们在计算任意一个其他子树内的点\(j\)答案时,可以将答案减去\(sz_i\),然后再容斥掉\(j\)到\(rt\)路径上存在\(a_i\)这种颜色的情况。
故而,对于每一次分治要处理的以\(rt\)为根的树,我们可以先预处理出\(sm\),表示的是这棵树中所有满足「到根节点路径上没有与其颜色相同的点」的点的子树大小之和;以及\(val_i\),表示的是颜色为\(i\)的到根节点路上没有颜色为\(i\)的节点的子树大小之和。然后我们需要对以它的每一个子节点为根的子树统计答案。
显而易见的,\(j\)到\(rt\)的路径上经过的颜色是不应该被重复统计的,所以我们要让\(sm\)减去\(\sum val_{i}\),其中\(i\)是路径上经过的颜色。
此外,我们还需要统计这些颜色对答案的贡献。令这些颜色的数量为\(nm\),那么它们对\(j\)的答案的贡献就应该是\(nm*dlt\),其中\(dlt\)是\(rt\)除了当前正在找的子节点以外的子节点的子树大小之和。
然后,我们还需要统计以根节点为路径端点的答案数量——这种答案是上述方法未统计到的。所以,我们需要将根节点的答案减去\(val_{a_{rt}}\),然后再加上以根节点为根的所有路径数量,也就是\(sz_{rt}\)

#include<iostream>
#include<cstdio>
#include<set>
#define Fv(i,X) for(int i=h[X];i;i=e[i].nxt)

typedef long long ll;

inline int Max(int A,int B){
	return A>B?A:B;
}
inline ll Max(ll A,ll B){
	return A>B?A:B;
}

struct ee{
	int v;
	int nxt;
}e[200005];
int h[100005],et=0;
inline void Eadd(int U,int V){
	e[++et]=(ee){V,h[U]};
	h[U]=et;
}
inline void add(int U,int V){
	Eadd(U,V);
	Eadd(V,U);
}

int n,a[100005];
int s,rt=0;
int vis[100005];
ll sz[100005],mx[100005],ans[100005];
inline void dfs0(int X,int FA){
	sz[X]=1,mx[X]=0;
	Fv(i,X){
		if(e[i].v==FA||vis[e[i].v]){
			continue;
		}
		dfs0(e[i].v,X);
		sz[X]+=sz[e[i].v];
		mx[X]=Max(mx[X],sz[e[i].v]);
	}
	mx[X]=Max(mx[X],s-sz[X]);
	if(mx[X]<mx[rt]){
		rt=X;
	}
}
ll cnt[100005],val[100005],sm=0,nm=0,dlt;
inline void dfs2(int X,int FA){
	sz[X]=1;
	++cnt[a[X]];
	Fv(i,X){
		if(e[i].v==FA||vis[e[i].v]){
			continue;
		}
		dfs2(e[i].v,X);
		sz[X]+=sz[e[i].v];
	}
	if(cnt[a[X]]==1){
		sm+=sz[X];
		val[a[X]]+=sz[X];
	}
	--cnt[a[X]];
}
inline void dfs3(int X,int FA,int TYP){
	++cnt[a[X]];
	Fv(i,X){
		if(e[i].v==FA||vis[e[i].v]){
			continue;
		}
		dfs3(e[i].v,X,TYP);
	}
	if(cnt[a[X]]==1){
		sm+=sz[X]*TYP;
		val[a[X]]+=sz[X]*TYP;
	}
	--cnt[a[X]];
}
inline void dfs4(int X,int FA){
	++cnt[a[X]];
	if(cnt[a[X]]==1){
		++nm;
		sm-=val[a[X]];
	}
	ans[X]+=sm+nm*dlt;
	Fv(i,X){
		if(e[i].v==FA||vis[e[i].v]){
			continue;
		}
		dfs4(e[i].v,X);
	}
	if(cnt[a[X]]==1){
		--nm;
		sm+=val[a[X]]; 
	}
	--cnt[a[X]];
}
inline void dfs5(int X,int FA){
	val[a[X]]=cnt[a[X]]=0;
	Fv(i,X){
		if(e[i].v==FA||vis[e[i].v]){
			continue;
		}
		dfs5(e[i].v,X);
	}
}
inline void calc(int X){
	sm=nm=0;
	dfs2(X,0);
	ans[rt]+=sm-val[a[X]]+sz[X];
	Fv(i,X){
		if(vis[e[i].v]){
			continue;
		}
		++cnt[a[X]];
		sm-=sz[e[i].v];
		val[a[X]]-=sz[e[i].v];
		dfs3(e[i].v,X,-1);
		--cnt[a[X]];
		
		dlt=sz[X]-sz[e[i].v];
		dfs4(e[i].v,X);
		
		++cnt[a[X]];
		sm+=sz[e[i].v];
		val[a[X]]+=sz[e[i].v]; 
		dfs3(e[i].v,X,1);
		--cnt[a[X]];
	}
	dfs5(X,0);
}

inline void dfs1(int X){
	vis[X]=1;
	calc(X);
	Fv(i,X){
		if(vis[e[i].v]){
			continue;
		}
		s=sz[X],rt=0;
		dfs0(e[i].v,X);
		dfs1(rt);
	}
}

void init(){
	scanf("%d",&n);
	for(int i=1;i<=n;++i){
		scanf("%d",&a[i]);
	}
	int u,v;
	for(int i=1;i<n;++i){
		scanf("%d%d",&u,&v);
		add(u,v);
	}
	rt=0,mx[0]=n;
	dfs0(1,0);
	dfs1(rt);
	for(int i=1;i<=n;++i){
		printf("%lld\n",ans[i]);
	}
}

int main(){
	init();
	return 0;
}

lp2634 国家集训队 聪聪可可

这一题本质上和那道「模板 点分治1」是一样的,直接一边统计一边取模即可。

#include<iostream>
#include<cstdio>
#define Fv(i,X) for(int i=h[X];i;i=e[i].nxt) 

typedef long long ll;

inline int Max(int A,int B){
	return A>B?A:B;
}
inline ll gcd(ll A,ll B){
	return B?gcd(B,A%B):A;
}

struct ee{
	int v;
	int w;
	int nxt;
}e[40005];
int h[20005],et=0;
inline void Eadd(int U,int V,int W){
	e[++et]=(ee){V,W,h[U]};
	h[U]=et; 
}
inline void add(int U,int V,int W){
	Eadd(U,V,W);
	Eadd(V,U,W);
}

int n,rt=0,s;
int vis[20005],sz[20005],mx[20005];
inline void dfs0(int X,int FA){
	sz[X]=1,mx[X]=0;
	Fv(i,X){
		if(e[i].v==FA||vis[e[i].v]){
			continue;
		}
		dfs0(e[i].v,X);
		sz[X]+=sz[e[i].v];
		mx[X]=Max(mx[X],sz[e[i].v]);
	}
	mx[X]=Max(mx[X],s-sz[X]);
	if(mx[X]<mx[rt]){
		rt=X;
	}
}
int exist[3],dis[20005],st[20005],st2[20005],tp=0,tp2=0;
ll ans=0;
inline void dfs2(int X,int FA){
	st[++tp]=dis[X];
	Fv(i,X){
		if(e[i].v==FA||vis[e[i].v]){
			continue;
		}
		dis[e[i].v]=dis[X]+e[i].w;
		dfs2(e[i].v,X);
	}
}
inline void calc(int X){
	tp2=0;
	Fv(i,X){
		if(vis[e[i].v]){
			continue;
		}
		tp=0;
		dis[e[i].v]=e[i].w;
		dfs2(e[i].v,X);
		for(int j=1;j<=tp;++j){
			ans+=exist[(3-st[j]%3)%3];
		}
		for(int j=1;j<=tp;++j){
			st2[++tp2]=st[j];
			++exist[st[j]%3];
		}
	}
	for(int i=0;i<3;++i){
		exist[i]=0;
	}
}

inline void dfs1(int X){
	exist[0]=vis[X]=1;
	calc(X);
	Fv(i,X){
		if(vis[e[i].v]){
			continue;
		}
		rt=0;
		s=sz[X];
		dfs0(e[i].v,X);
		dfs1(rt);
	}
}

void init(){
	scanf("%d",&n);
	int u,v,w;
	for(int i=1;i<n;++i){
		scanf("%d%d%d",&u,&v,&w);
		add(u,v,w);
	} 
	rt=0,mx[0]=n;
	dfs0(1,0);
	dfs1(1);
	ans=(ans<<1)+n;
	ll g=gcd(ans,n*n);
	printf("%lld/%lld\n",ans/g,(n*n)/g);
}

int main(){
	init();
	return 0;
}

lp3806 【模板】点分治1

点分治是一种常常用于处理树上路径统计问题的算法。
首先我们可以想到这一题的一种简单的分治做法:找到一个点,从它开始搜,求出它的每一种长度。然后搜它的每一个子树,找到这些子树的根,求出它们的每一种长度并统计答案。
下面的问题便是要如何统计答案。容易想到的一种方案是枚举以某个点为根的链长两两相加得到的长度再容斥掉重复经过某一条边的路径,也就是所有经过它的同一个子节点的链对。
然而仔细想想这种做法的复杂度是有问题的。在菊花图上,它甚至会达到\(n^2\)的复杂度。故而我们必须另外考虑其他做法。
仔细观察数据范围,我们发现询问个数不超过100,这启发我们考虑一种\(O(nmlogn)\)的做法。
当我们求出以某个节点为根且经过前\(i\)个子节点的所有链以后,我们可以直接标记这这些长度的存在性,然后搜索经过第\(i+1\)个子节点的所有链,并枚举判断询问的长度减去这个链的长度剩下的长度是否存在。
这就做完了。

另:这题的数据是真的水。我犯了两个错,一个是没重设为局部大小,一个是找重心写挂了,而且用的还是复杂度错的算法,居然还过了…

#include<iostream>
#include<cstdio>

#define Fv(i,X) for(int i=h[X];i;i=e[i].nxt) 

inline int Max(int A,int B){
	return A>B?A:B;
}
struct ee{
	int v;
	int w;
	int nxt;
}e[20005];
int h[10005],et=0;
inline void Eadd(int U,int V,int W){
	e[++et]=(ee){V,W,h[U]};
	h[U]=et;
}
inline void add(int U,int V,int W){
	Eadd(U,V,W);Eadd(V,U,W);
}
int ans[10005]; 

int n,m,rt,s;

int mx[10005],sz[10005],vis[10005];
inline void dfs0(int X,int FA){
	sz[X]=1,mx[X]=0;
	Fv(i,X){
		if(e[i].v==FA||vis[e[i].v]){
			continue;
		}
		dfs0(e[i].v,X);
		sz[X]+=sz[e[i].v];
		mx[X]=Max(mx[X],sz[e[i].v]);
	}
	mx[X]=Max(mx[X],s-sz[X]);
	if(mx[X]<mx[rt]){
		rt=X;
	}
}
int a[10005];
int dis[10005],tp=0;
inline void dfs2(int X,int FA){
	dis[++tp]=a[X];
	Fv(i,X){
		if(e[i].v==FA||vis[e[i].v]){
			continue;
		}
		a[e[i].v]=a[X]+e[i].w;
		dfs2(e[i].v,X);
	}
}
int exist[10000005],lst[10005],cnt=0,qry[10005];
inline void calc(int X){
	cnt=0;
	Fv(i,X){
		if(vis[e[i].v]){
			continue;
		}
		a[e[i].v]=e[i].w;
		tp=0;
		dfs2(e[i].v,X);
		for(int j=1;j<=m;++j){
			for(int k=1;k<=tp;++k){
				(qry[j]-dis[k]>=0)?ans[j]|=exist[qry[j]-dis[k]]:0; 
			}
		}
		for(int j=1;j<=tp;++j){
			lst[++cnt]=dis[j];
			exist[dis[j]]=1;
		}
	}
	for(int i=1;i<=cnt;++i){
		exist[lst[i]]=0;
	}
}

inline void dfs1(int X){
	exist[0]=vis[X]=1;
	calc(X);
	Fv(i,X){
		if(vis[e[i].v]){
			continue;
		}
		s=sz[X],rt=0;//记得重置根。 
		dfs0(e[i].v,X);
		dfs1(rt);
	}
}

void init(){
	scanf("%d%d",&n,&m);
	int u,v,w,x;
	for(int i=1;i<n;++i){
		scanf("%d%d%d",&u,&v,&w);
		add(u,v,w);
	}
	for(int i=1;i<=m;++i){
		scanf("%d",&x);
		qry[i]=x;
	}
	s=n,mx[0]=n,rt=0;
	dfs0(1,0);
	dfs1(rt);
	for(int i=1;i<=m;++i){
		puts(ans[i]?"AYE":"NAY");
	}
} 

int main(){
	init();
	return 0;
}

lp5236 【模板】静态仙人掌(圆方树)

按照我们之前的经验,仙人掌上问题往往可以通过圆方树转化为树上问题。
我们发现,最短路在树上是一种非常容易解决的问题。只需预处理到根节点的长度然后死命跑LCA就可以了。
但是在一般图上,最短路的实时处理就会变得很困难。
我们可以尝试通过给圆方树上的边赋上特别的边权来处理这个问题。

对于圆-圆边,赋边权为原边权,这是容易理解的。
对于方点到它的父亲圆点的边,赋边权为0,对于圆点到它的父亲方点的边,赋边权为这个圆点到这个方点的父亲圆点的最短距离。

这时候我们会遇到一个问题,就是Tarjan找环的时候找不到返祖边的边权。
解决方案是记录每一个到根节点在dfs树上的距离,然后当我们找到一个环一路找爸爸并统计长度即可。

然后是计算答案,我们发现,如果询问的两个点的最近公共祖先是一个方点,那么它们的答案不能用普通方法计算。
我一开始的想法是尝试直接用某个节点到父亲方点的边权直接计算答案,但这样会导致答案错误,原因是它无法正确地区分两个点位于圆环的同一侧还是不同侧的情况。
故而,我们需要保存原来的距离它的父亲方点的靠某一侧的距离,故而当lca是方点的时候特殊判断计算即可。

 #include<iostream>
#include<cstdio>
#define Fv(H,A,X) for(int A=H[X];A;A=e[A].nxt)

typedef long long ll;

inline ll Min(ll A,ll B){
    return A<B?A:B;
}
inline int Min(int A,int B){
	return A<B?A:B;
}
inline ll Abs(ll A){
	return A>0?A:-A;
}
inline void Swap(int &A,int &B){
    A^=B^=A^=B;
}

struct ee{
    int v;
    ll w;
    int nxt;
}e[200005];
int h0[10005],h[20005],et=0;
inline void Eadd(int *H,int U,int V,ll W){
    e[++et]=(ee){V,W,H[U]};
    H[U]=et;
}
inline void add(int *H,int U,int V,ll W){
    Eadd(H,U,V,W);
    Eadd(H,V,U,W);
}
int dfn[20005],lw[20005],cnt=0,dep[20005],fa[20005][30];
ll dis[20005],sz[20005];
int nm=0;
int st[20005],tp=0;
inline void dfs0(int X){
    dfn[X]=lw[X]=++cnt;
    Fv(h0,i,X){
    	if(e[i].v==fa[X][0]){
    		continue;
		}
        if(!dfn[e[i].v]){
            fa[e[i].v][0]=X;
            dis[e[i].v]=dis[X]+e[i].w;
            dfs0(e[i].v);
            lw[X]=Min(lw[X],lw[e[i].v]);
    	}else{
			lw[X]=Min(lw[X],dfn[e[i].v]);
			if(e[i].v!=fa[X][0]&&dfn[e[i].v]<dfn[X]){
                ++nm;
                add(h,nm,e[i].v,0);
                ll len=e[i].w;
                for(int j=X;j^e[i].v;j=fa[j][0]){
                	len+=dis[j]-dis[fa[j][0]];
                }
                sz[nm]=len;
                ll nw=e[i].w;
                for(int j=X;j^e[i].v;j=fa[j][0]){
                    add(h,nm,j,Min(nw,len-nw));
                    sz[j]=nw; 
                    nw+=dis[j]-dis[fa[j][0]];
                }
            }
        }
        if(lw[e[i].v]>dfn[X]){
        	add(h,X,e[i].v,e[i].w);
		} 
    }
}

inline void dfs1(int X,int FA){
    dep[X]=dep[FA]+1;
    fa[X][0]=FA;
    Fv(h,i,X){
        if(e[i].v!=FA){
            dis[e[i].v]=dis[X]+e[i].w;
            dfs1(e[i].v,X);
        }
    }
}

int n,m,q;

inline ll calc(int X,int Y){
    int XX=X,YY=Y,lca;
    while(dep[XX]<dep[YY]){
        Swap(XX,YY);
    }
    for(int i=20;~i;--i){
        if(dep[XX]-(1<<i)>=dep[YY]){
            XX=fa[XX][i];
        }
    }
    if(XX==YY){
        lca=XX;
    }else{
        for(int i=20;~i;--i){
            if(fa[XX][i]!=fa[YY][i]){
                XX=fa[XX][i];
                YY=fa[YY][i];
            }
        }
        lca=fa[XX][0];
    }
    ll RT=dis[X]+dis[Y]-(dis[lca]<<1);
    if(lca>n){
        ll P=dis[XX]-dis[lca],Q=dis[YY]-dis[lca];
        RT-=(P+Q);
        RT+=Min(sz[lca]-Abs(sz[XX]-sz[YY]),Abs(sz[XX]-sz[YY]));
    }
    return RT;
}



void init(){
    scanf("%d%d%d",&n,&m,&q);
    nm=n;
    int u,v;
	ll w;
    for(int i=1;i<=m;++i){
        scanf("%d%d%lld",&u,&v,&w);
        add(h0,u,v,w);
    }
    fa[1][0]=0;
    dfs0(1);
    for(int i=1;i<=nm;++i){
        dep[i]=0,dis[i]=0;
    }
    dfs1(1,0);
    for(int j=1;j<=20;++j){
        for(int i=1;i<=nm;++i){
            fa[i][j]=fa[fa[i][j-1]][j-1];
        }
    }
    int x,y;
    for(int i=1;i<=q;++i){
        scanf("%d%d",&x,&y);
        printf("%lld\n",calc(x,y));
    }
}
int main(){
    init();
    return 0;
}

lp3320 SDOI2015 寻宝游戏

我们找到了这样一个结论:
「一个树上点集构成的最小生成树中,若两点间有路径,则此两点的DFS序在树上相近。」
这个结论的证明是较为困难的,但是感性理解还是比较容易的。
有了这个结论,我们就可以解决这一题。
每当一个新的点x即将加入点集的时候,我们只需要计算点集中DFS序刚好比它小的点y和DFS序刚好比它大的点z,然后将答案加上如下的式子:
$$dis_{x,y}+dis_{x,z}-dis_{y,z}$$
删去的时候逆向操作即可。
维护点集可以使用set。(善用STL(大雾))计算路径长度可以LCA+容斥。

注意:记得开long long

#include<iostream>
#include<cstdio>
#include<set>

struct ee{
	int v;
	int w;
	int nxt;
}e[200005];
int h[100005],et=0;
inline void add(int U,int V,int W){
	e[++et]=(ee){V,W,h[U]};
	h[U]=et;
}
int fa[100005][30],dfn[100005],loc[100005],dep[100005],cnt=0;
long long val[100005];
//注意将两种深度分开。 
inline void dfs(int X,int FA){
	fa[X][0]=FA,dfn[X]=++cnt,loc[cnt]=X,dep[X]=dep[FA]+1;
	for(int i=h[X];i;i=e[i].nxt){
		if(e[i].v!=FA){
			val[e[i].v]=val[X]+e[i].w;
			dfs(e[i].v,X);
		}
	}
}

inline int lca(int X,int Y){
	if(dep[X]<dep[Y]){
		std::swap(X,Y);
	}
	for(int i=20;i>=0;--i){
		if(dep[X]-(1<<i)>=dep[Y]){
			X=fa[X][i];
		}
	}
	if(X==Y){
		return X;
	}
	for(int i=20;i>=0;--i){
		if(fa[X][i]!=fa[Y][i]){
			X=fa[X][i];
			Y=fa[Y][i];
		}
	}
	return fa[X][0];
}

inline long long dis(int X,int Y){
	return val[X]+val[Y]-(val[lca(X,Y)]<<1);
}

int n,m;
long long ans=0;
bool vis[100005];
std::set<int> s;
void init(){
	scanf("%d%d",&n,&m);
	int u,v,w;
	for(int i=1;i<n;++i){
		scanf("%d%d%d",&u,&v,&w);
		add(u,v,w);
		add(v,u,w);
	}
	dfs(1,0);
	for(int j=1;j<=20;++j){
		for(int i=1;i<=n;++i){
			fa[i][j]=fa[fa[i][j-1]][j-1];
		}
	}
	int x,y,z;
	long long d;
	std::set<int>::iterator it;
	for(int i=1;i<=m;++i){
		scanf("%d",&x);
		x=dfn[x];
		if(!vis[loc[x]]){
			s.insert(x);
		}
		y=loc[(it=s.lower_bound(x))==s.begin()?*--s.end():*--it];
		z=loc[(it=s.upper_bound(x))==s.end()?*s.begin():*it];
		//注意运算符优先级。 
		if(vis[loc[x]]){
			s.erase(x);
		}
		x=loc[x];
		d=dis(x,y)+dis(x,z)-dis(y,z);
		if(!vis[x]){
			vis[x]=1;
			ans+=d;
		}else{
			vis[x]=0;
			ans-=d;
		}
		//注意前后的x不是一个x 
		printf("%lld\n",ans);
	}
}

int main(){
	init();
	return 0;
}

CF487E Tourists

众所周知,圆方树是用来处理图上点双相关问题的。
同时,点双又是一个和简单路径密切相关的东西。故而这一题我们可以考虑用圆方树来处理。
我们发现,如果两点之间有多条简单路径,那么它们一定处于同一个点双中。所以,我们可以把原图转化为圆方树,这样就可以用树链剖分套线段树来求解询问了。
但是题目要求要修改点权,这要怎么办呢?

一个直观的想法是暴力修改每个点周围相邻的方点。然而事实上如果出现了个菊花套菊花套菊花图的话显然是会严重TLE的。
我们考虑一种动态维护一个方点的点值的算法。我们尝试对每个方点开一个mulitiset,每当修改一个点的点权的时候就把旧的点权删去然后插入新的点权,并更新方点点值。
然而,如果每个修改的圆点周围都有很多的方点的话,这种做法仍然有TLE的风险。我们考虑对于每个圆点,只更新它的父亲方点。
它对它的儿子方点的贡献,则在询问的时候统计。
这样复杂度就对了。
这就使用了圆方树上树链剖分套线段树解决了这道题。

注意:
树链剖分中更新最大孩子的部分,这里是son!不是sz!调了我一个晚上!

#pragma GCC optimize("Ofast")
#include<iostream>
#include<cstdio>
#include<algorithm> 
#include<set>
#define Fv(H,A,X) for(int A=H[X];A;A=e[A].nxt)

std::multiset<int> s[200005]; 

const int INF=2147483647;

inline int Max(int A,int B){
	return A>B?A:B;
}
inline int Min(int A,int B){
	return A<B?A:B;
}
inline void Swap(int &A,int &B){
	A^=B^=A^=B;
}

struct ee{
	int v;
	int nxt;
}e[2000005];
int h0[100005],h[200005],et=0;
inline void Eadd(int *H,int U,int V){
	e[++et]=(ee){V,H[U]};
	H[U]=et;
}
inline void add(int *H,int U,int V){
	Eadd(H,U,V);
	Eadd(H,V,U);
}


int dfn[200005],lw[100005];
//注意数组大小。 
int nm,cnt=0;
int st[100005],tp=0;
inline void dfs0(int X){
	dfn[X]=lw[X]=++cnt;
	st[++tp]=X;
	Fv(h0,i,X){
		if(!dfn[e[i].v]){
			dfs0(e[i].v);
			lw[X]=Min(lw[X],lw[e[i].v]);
			if(lw[e[i].v]==dfn[X]){
				++nm;
				for(int j=0;j!=e[i].v;--tp){
					j=st[tp];
					add(h,nm,j);
				}
				add(h,X,nm);
			}
		}else{
			lw[X]=Min(lw[X],dfn[e[i].v]);
		}
	}
}
int fa[200005],sz[200005],dep[200005],son[200005],top[200005],loc[200005];
inline void dfs1(int X,int FA){
	fa[X]=FA,dep[X]=dep[FA]+1,sz[X]=1;
	Fv(h,i,X){
		if(e[i].v!=FA){
			dfs1(e[i].v,X);
			sz[X]+=sz[e[i].v];
			if(sz[son[X]]<sz[e[i].v]){
				son[X]=e[i].v;
				//这里是son!不是sz!调了我一个晚上! 
			}
		}
	}
}
inline void dfs2(int X,int FA,int TP){
	dfn[X]=++cnt,loc[cnt]=X,top[X]=TP;
	if(son[X]){
		dfs2(son[X],X,TP);
	}
	Fv(h,i,X){
		if(e[i].v!=FA&&e[i].v!=son[X]){
			dfs2(e[i].v,X,e[i].v);
		}
	}
}

int n,m,q;
int a[200005];

#define MID (L+R>>1)
#define LS (X<<1)
#define RS (X<<1|1)

int tr[600005];
inline void bld(int X,int L,int R){
	if(L==R){
		tr[X]=a[loc[L]];
//		记得逆哈希 
		return;
	}
	bld(LS,L,MID);
	bld(RS,MID+1,R);
	tr[X]=Min(tr[LS],tr[RS]);
}

inline void chg(int X,int L,int R,int P,int V){
	if(L==R){
		tr[X]=V;
		return;
	}
	P<=MID?chg(LS,L,MID,P,V):chg(RS,MID+1,R,P,V);
	tr[X]=Min(tr[LS],tr[RS]);
}

inline int qry(int X,int L,int R,int A,int B){
	if(A>R||L>B){
		return INF;
	}
	if(A<=L&&R<=B){
		return tr[X];
	}
	return Min(qry(LS,L,MID,A,B),qry(RS,MID+1,R,A,B));
}

void init(){
	scanf("%d%d%d",&n,&m,&q);
	nm=n;
	for(int i=1;i<=n;++i){
		scanf("%d",&a[i]);
	}
	int u,v;
	for(int i=1;i<=m;++i){
		scanf("%d%d",&u,&v);
		add(h0,u,v);
	}
	dfs0(1);
	dfs1(1,0);
	cnt=0;
	dfs2(1,0,1);
	for(int i=1;i<=n;++i){
		if(fa[i]){
			s[fa[i]].insert(a[i]);
		}
	}
	for(int i=n+1;i<=nm;++i){
		a[i]=*s[i].begin();
	}
	
	bld(1,1,nm);
	char ch[3];
	int x,y;
	int ans;
	
	for(int i=1;i<=q;++i){
		scanf("%s%d%d",ch,&x,&y);
		if(ch[0]=='C'){
			chg(1,1,nm,dfn[x],y);
			if(fa[x]){
				u=fa[x];
				s[u].erase(s[u].lower_bound(a[x]));
				s[u].insert(y);
				if(a[u]!=*s[u].begin()){
					a[u]=*s[u].begin();
					chg(1,1,nm,dfn[u],a[u]);
				}
			}
			a[x]=y;
		}else{
			ans=INF;
			while(top[x]!=top[y]){
				if(dep[top[x]]<dep[top[y]]){
					Swap(x,y);
				}
				ans=Min(ans,qry(1,1,nm,dfn[top[x]],dfn[x]));
				x=fa[top[x]];
			}
			if(dfn[x]>dfn[y]){
				Swap(x,y);
			}
			ans=Min(ans,qry(1,1,nm,dfn[x],dfn[y]));
			if(x>n){
				ans=Min(ans,a[fa[x]]);
			}
			printf("%d\n",ans);
		}
	} 
}

int main(){
	init();
	return 0;
}

lp4630 APIO2018 Duathlon 铁人两项

圆方树是一种在仙人掌图上常用的数据结构,但是这并不意味着圆方树只在仙人掌图上有用。事实上,在任何一张图上,我们都可以用相似的方法来构造一棵圆方树。
对于一张图,我们预处理出它的所有点双,然后对每一个点双建一个方点,其他处理方法和仙人掌上圆方树几乎相同。
这里的点双要如何预处理呢?我们考虑一个性质:当我们预处理出一张图的DFS树后,任何一条边属于且仅属于一个点双。
那么,我们就可以尝试找到一个点双中深度最浅的节点,然后由它构造出这个方点。
我们发现,当我们搜索完一个节点的子树后,如果子节点中的某一个节点的lw是这个节点,那么这个节点就是它所在的点双中深度最浅的节点。
这是因为,如果一个节点的lw节点是它的父节点,那么它和它的子树就没有任何返祖边能够到达比当前节点更浅的节点,也就说明如果当前节点在点双内,那么它一定是点双内最浅的节点。
有没有可能当前节点不在点双内呢?这是不可能的。如果有返祖边连向当前节点,那么当前节点显然不会成为割点;如果没有,那么当前节点所属的点双就一定只有两个点。

现在把目光投到这道题。
首先考虑点双的基本性质。我们发现,对于至少有三个点的点双,任取三个点,它们总是一对满足题意的三元组。
这是由于点双的定义,点双里没有割点,自然总是可以找到两点间的两条不相交的简单路径。
拓展这个结论,我们发现,如果一条简单路径经过一个点双,那么显然无论固定哪个点,这条路径都始终是一条简单路径。
故而,对于选定的起点和终点,我们可以分两类讨论。
倘若它们位于同一个点双,那么显然它们之间的满足题意的三元组个数恰好是这个点双的点数-2
对于不属于同一个点双的情况,它们之间有可能经过其他的点双,也有可能不经过。每经过一个点双,它们之间的满足题意的三元组个数就会加上这个点双的点的个数。
同时,答案还要加上起点和终点各自处在的点双的点数个数各自-1。
这要怎么统计呢?我们可以让每个方点的权值为点双中的点的数量,每个圆点的权值为-1,然后枚举点对统计路径和即可。
仔细一想觉得有点不对劲儿:这样的复杂度岂不是要n^2logn级别?妥妥地T啊。
正难则反,我们可以统计每个点对答案的贡献,也就是经过它的路径数乘上它本身的权值。而前者可以通过一个普通的树形DP求得。
这就做完了。

注意:
要注意每个点的子树外的节点的数量是相当于连通块大小减去它的子树大小,而非总节点数减去它的子树大小。故而要注意统计连通块大小。

#include<iostream>
#include<cstdio>
#define Fv(H,A,X) for(int A=H[X];A;A=e[A].nxt)

inline int Min(int A,int B){
	return A<B?A:B;
}

struct ee{
	int v;
	int nxt;
}e[1200005];
int h0[100005],h[200005],et=0;
inline void Eadd(int *H,int U,int V){
	e[++et]=(ee){V,H[U]};
	H[U]=et;
}
inline void add(int *H,int U,int V){
	Eadd(H,U,V);
	Eadd(H,V,U);
}

int n,m;
int dfn[100005],lw[100005],cnt=0,nm=0;
int st[100005],tp=0;
int val[200005],nwsz;
long long ans=0;
inline void dfs(int X){
	dfn[X]=lw[X]=++cnt;
	st[++tp]=X;
	++nwsz;
//	要注意每个点的子树外的节点的数量是相当于连通块大小减去它的子树大小,而非总节点数减去它的子树大小。故而要注意统计连通块大小。 
	Fv(h0,i,X){
		if(!dfn[e[i].v]){
			dfs(e[i].v);
			lw[X]=Min(lw[X],lw[e[i].v]);
			if(lw[e[i].v]==dfn[X]){
//				注意这里应当判定的是lw(v)=dfn(u) 
				val[++nm]=1;
				for(int j=0;j!=e[i].v;--tp){
					++val[nm];
					j=st[tp];
					add(h,nm,j);
				}
				add(h,X,nm);
			}
		}else{
			lw[X]=Min(lw[X],dfn[e[i].v]);
		}
	}
}

int vis[200005],sz[200005];

inline void dfs2(int X){
	vis[X]=1;
	sz[X]=(X<=n);
	Fv(h,i,X){
		if(!vis[e[i].v]){
			dfs2(e[i].v);
			ans+=2ll*val[X]*sz[X]*sz[e[i].v];
			sz[X]+=sz[e[i].v];
		}
	}
	ans+=2ll*val[X]*sz[X]*(nwsz-sz[X]);
}

void init(){
	scanf("%d%d",&n,&m);
	nm=n;
	for(int i=1;i<=n;++i){
		val[i]=-1;
	}
	int u,v;
	for(int i=1;i<=m;++i){
		scanf("%d%d",&u,&v);
		add(h0,u,v);
	}
	for(int i=1;i<=n;++i){
		if(!dfn[i]){
			nwsz=0;
			dfs(i);
			dfs2(i);
			--tp;
		}
	}
	printf("%lld\n",ans);
}

int main(){
	init();
	return 0;
}

lp4244 SHOI2008 仙人掌图 II

仙人掌图是每一个点双都只有一个环的连通图。
对于一个仙人掌图,它在许多方面都有树的性质,只是其中的有一些节点被换成了环。
我们不妨依然采用一种伪树形DP的方式来处理这棵树,我们发现,非环节点的转移都是非常容易达成了,问题在于环上的节点的转移。

首先,我们要找到这个环,这可以用Tarjan算法来完成。
具体来说,我们维护两个数组:dfn和lw,其中前者表示的是某一个节点的dfs序,后者表示的是某一个节点至多走一条返祖边或者父亲边能够到达的最小dfs序。
显然,在搜索中,如果下一个节点未被访问过,我们就可以在搜索完它以后将当前节点的lw与它的lw取较小值。
否则,当前节点通向它的边一定是一条返祖边或者父亲边,那么当前节点的lw值应当与它的dfs序取较小值。

对于一个环,我们如果将它视为一个节点,我们想一想要怎么从它的「孩子」们处转移呢?
我们发现,依次枚举它的每一个孩子,答案显然是:
$$max(f_i+f_j+dis_{i,j})$$
这个式子可以使用单调队列优化。所以我们每一次把一个环提出来瞎DP一下就好了。

#include<iostream>
#include<cstdio>
#include<deque>
#define Fv(A,U) for(int A=h[U];A;A=e[A].nxt)

inline int Min(int A,int B){
	return A<B?A:B;
}
inline int Max(int A,int B){
	return A>B?A:B;
}

struct ee{
	int v;
	int nxt;
}e[200005];
int et=0,h[100005];
inline void Eadd(int U,int V){
	e[++et]=(ee){V,h[U]};
	h[U]=et;
}
inline void add(int U,int V){
	Eadd(U,V);
	Eadd(V,U);
}

int n,m;
int dfn[100005],lw[100005],dep[100005],fa[100005],cnt=0;
int ans=0,f[100005],a[100005];
std::deque<int> q;
inline void calc(int X,int Y){
	int tot=dep[Y]-dep[X]+1;
	int nw=tot;
	for(int i=Y;i!=X;i=fa[i]){
		a[nw--]=f[i];
	}
	a[nw]=f[X];
	for(int i=1;i<=tot;++i){
		a[tot+i]=a[i];
	}
	while(!q.empty()){
		q.pop_front();
	}
	q.push_back(1);
	for(int i=2;i<=(tot<<1);++i){
		while(!q.empty()&&i-q.front()>(tot>>1)){
			q.pop_front();
		}
		if(!q.empty()){
			ans=Max(ans,a[i]+a[q.front()]+i-q.front());
		}
		while(!q.empty()&&a[q.back()]-q.back()<a[i]-i){
			q.pop_back();
		}
		q.push_back(i);
	}
	for(int i=2;i<=tot;++i){
		f[X]=Max(f[X],a[i]+Min(i-1,tot-i+1));
	}
}
inline void dfs(int X,int FA){
	dfn[X]=lw[X]=++cnt;
	Fv(i,X){
		if(e[i].v!=FA){//这一句如果不加会无形降低很多点的lw值,从而使环的大小变成0。 
			if(!dfn[e[i].v]){
				fa[e[i].v]=X;
				dep[e[i].v]=dep[X]+1;
				dfs(e[i].v,X);
				lw[X]=Min(lw[X],lw[e[i].v]);
			}else{
				lw[X]=Min(lw[X],dfn[e[i].v]);
			}
			if(lw[e[i].v]>dfn[X]){
				ans=Max(ans,f[X]+f[e[i].v]+1);
				f[X]=Max(f[X],f[e[i].v]+1);
			}
		}
		
	}
	Fv(i,X){
		if(fa[e[i].v]!=X&&dfn[X]<dfn[e[i].v]){
			calc(X,e[i].v);
		}
	}
}

void init(){
	scanf("%d%d",&n,&m);
	int u,v,x;
	for(int i=1;i<=m;++i){
		u=0;
		scanf("%d",&x);
		for(int j=1;j<=x;++j){
			scanf("%d",&v);
			if(u){
				add(u,v);
			}
			u=v;
		}
	}
	dfs(1,0);
	printf("%d\n",ans);
}

int main(){
	init();
	return 0;
}

lp2597 ZJOI2012 灾难

这一题的思路还是比较清晰的。虽然可以当作支配树模板,但是事实上可以上一个LCA来代替支配树。
具体来说,就是把有多个食物的消费者连到它所有食物的LCA。然后计算一遍子树大小就好了。
注意连点之前要先拓扑排序。

#include<iostream>
#include<cstdio>
#include<queue>

#define Swap(A,B) (A^=B^=A^=B)

struct ee{
	int v;
	int nxt;
}e[2500005];
//h,树上的节点。g,拓扑排序的节点。to,每个节点的所有父亲。 
int h[70000],g[70000],et=0,dep[70000],fa[70000][18],in[70000],to[70000],sz[70000],loc[70000];
int n,tp=0;
inline void add(int *H,int U,int V){
	if(U==V){
		return;
	}
	e[++et]=(ee){V,H[U]};
	H[U]=et;
}
inline void srt(){
	std::queue<int> q;
	for(int i=1;i<=n;++i){
		if(!in[i]){
			q.push(i);
		}
	}
	int p=0;
	while(!q.empty()){
		p=q.front();
		q.pop();
		loc[++tp]=p;
		for(int i=g[p];i;i=e[i].nxt){
			--in[e[i].v];
			if(!in[e[i].v]){
				q.push(e[i].v);
			}
		}
	}
}
inline int lca(int X,int Y){
	if(dep[X]<dep[Y]){
		Swap(X,Y);
	}
	for(int i=17;i>=0;--i){
		if(dep[X]-(1<<i)>=dep[Y]){
			X=fa[X][i]; 
		}
	}
	if(X==Y){
		return X;
	}
	for(int i=17;i>=0;--i){
		if(fa[X][i]!=fa[Y][i]){
			X=fa[X][i],Y=fa[Y][i];
		}
	}
	return fa[X][0];
}
inline void prpr(){
	int nw=0;
	for(int i=1,j;i<=n;++i){
		j=loc[i];
		nw=e[to[j]].v;
		for(int k=to[j];k;k=e[k].nxt){
			nw=lca(nw,e[k].v);
		}
//		请注意这里的nw可能不存在任何父亲节点。 
		add(h,nw,j);
		fa[j][0]=nw;
		dep[j]=dep[nw]+1;
		for(int k=1;k<=17;++k){
			fa[j][k]=fa[fa[j][k-1]][k-1];
		}
	}
}
inline void dfs(int X){
	for(int i=h[X];i;i=e[i].nxt){
		dfs(e[i].v);
		sz[X]+=sz[e[i].v];
	}
	++sz[X];
}
void init(){
	scanf("%d",&n);
	int x; 
	for(int i=1;i<=n;++i){
		scanf("%d",&x);
		while(x){
			++in[i];
			add(g,x,i);
			add(to,i,x);
			scanf("%d",&x);
		}
	}
	srt();
	prpr();
	dfs(0);
	for(int i=1;i<=n;++i){
		printf("%d\n",sz[i]-1);
	}
}

int main(){
	init();
	return 0;
}

CF600E Lomsat gelral

一道树上启发式合并的例题。
首先考虑暴力的做法。统计每一个子节点的信息,然后传到父节点。
我们发现这样做的复杂度是\(O(n^2)\)的。显然,复杂度是错误的。
我们考虑修改统计子节点的顺序。
重链剖分有一个很有意义的性质:一个点通向根的路径上的轻边的数量最多不会超过\(log_n\)。这利用重链剖分的性质可以轻松用反证法证明。
那么,依据这个性质,我们可以统计轻边、上传重边。这也就意味着,对于每一次访问,如果它是一条轻边,那么就把它的信息统计完了清空;如果是一条重边,那么把它的信息上传。
例如,我们现在有一个节点\(X\),那么我们先计算它的所有轻节点,然后我们再计算它的重节点,最后将它除了重节点以外的地方都搜一遍,这样就获得了它的所有信息。
为什么这样做复杂度是对的呢?这就可以基于刚刚那个性质来证明了。具体地来说,一个节点会被清理信息,当且仅当它是一个节点下面的一个轻节点。也就是说,它被清空的次数就是它通向根的路径上轻边的数量。
由刚才那个性质可得,这个值是对数级的,所以复杂度是对的。
注意sm数组的tp的控制。

#include<iostream>
#include<cstdio>
struct ee{
	int v;
	int nxt;
}e[200005];
int h[100005],et=0;
inline void add(int U,int V){
	e[++et]=(ee){V,h[U]};
	h[U]=et;
}
int sn[100005],sz[100005],a[100005],cnt[100005];
bool kp[100005];
long long ans[100005];//ans表示每个节点的答案 
long long sm[100005];//sn表示出现次数为cnt次的颜色值的和 
int n;
inline void dfs1(int X,int FA){
	for(int i=h[X];i;i=e[i].nxt){
		if(e[i].v!=FA){
			dfs1(e[i].v,X);
		}
	}
	sz[X]=1;
	for(int i=h[X];i;i=e[i].nxt){
		if(e[i].v){
			sz[X]+=sz[e[i].v];
			if(sz[e[i].v]>sz[sn[X]]){
				sn[X]=e[i].v;
			}
		}
	}
}
int tp;
inline void rnw(int X,int FA,int V){
	sm[cnt[a[X]]]-=a[X];
	cnt[a[X]]+=V;
	sm[cnt[a[X]]]+=a[X];
	if(sm[tp+1]){
		++tp;
	}
	if(!sm[tp]){
		--tp;
	}
	for(int i=h[X];i;i=e[i].nxt){
		if(e[i].v!=FA&&!kp[e[i].v]){
			rnw(e[i].v,X,V);
		}
	}
}
inline void dfs2(int X,int FA,int isSn){
	for(int i=h[X];i;i=e[i].nxt){
		if(e[i].v!=FA&&e[i].v!=sn[X]){
			dfs2(e[i].v,X,0);
		}
	}
	if(sn[X]){
		dfs2(sn[X],X,1);
		kp[sn[X]]=1;
	}
	rnw(X,FA,1);
	kp[sn[X]]=0;
	ans[X]=sm[tp];
	if(!isSn){
		rnw(X,FA,-1);
	} 
}
void init(){
	scanf("%d",&n);
	for(int i=1;i<=n;++i){
		scanf("%d",&a[i]);
	}
	int u,v;
	for(int i=1;i<n;++i){
		scanf("%d%d",&u,&v);
		add(u,v),add(v,u);
	}
	dfs1(1,0);
	dfs2(1,0,1);
	for(int i=1;i<=n;++i){
		printf("%lld ",ans[i]);
	}
}

int main(){
	init();
	return 0;
}

lp2052 NOI2011 道路修建

作为一道NOI的题,它一度令我以为它是2001的。
不曾想,NOI竟然有这么水的题。
我一开始以为自己的写法错了。
但是…
唉,反正就是计算子树大小就对了。
另:存树的时候绝·对·不·可·以「u>v?u^=v^=u^=v:0」!!!这样会导致错误。反例:1->3,3->2。NOIP因为这个丢了很多分。

#include<iostream>
#include<cstdio>
#include<cmath>

struct ee{
    int v;
    int w;
    int nxt;
}e[2000005];
int h[1000005],et=0;
inline void add(int u,int v,int w){
    e[++et]=(ee){v,w,h[u]};
    h[u]=et;
}

int n,in[1000005];
int f[10000005];
bool vis[1000005];
long long ans=0;
inline void dfs(int X){
    for(int i=h[X];i;i=e[i].nxt){
        if(vis[e[i].v]==1){
            continue;
        }
        vis[e[i].v]=1;
        dfs(e[i].v);
        ans+=1LL*e[i].w*(std::abs(((f[e[i].v]<<1)-n)));
        f[X]+=f[e[i].v];
    }
    ++f[X];
}


void init(){
    scanf("%d",&n);
    int u,v,w;
    for(int i=1;i<n;++i){
        scanf("%d%d%d",&u,&v,&w);
        add(u,v,w);
        add(v,u,w);
    }
    vis[1]=1;
    dfs(1);
    printf("%lld",ans);
}

int main(){
    init();
    return 0;
}

 

lp1967 NOIP2013 货车运输

一道最大生成树加LCA的裸题。
因为是求路上权值最小的边权值最大,所以可以在最大生成树上跑。当然二分答案加01BFS也是一种想法,不过时间复杂度不对。
那么在最大生成树上很显然最大的路径上边权值最小。
所以在最大生成树上跑LCA,记录沿途路径最大值即可。
当然跑树剖也是可以的,不过很难写。

#include<iostream>
#include<cstdio>
#include<algorithm>

const int INF = 0x3f3f3f3f;

int n,m,q;

int FA[10005];
inline int fa( int X ){
    return X==FA[X]?X:(FA[X]=fa(FA[X]));
}
inline void mrg( int X, int Y ){
    X = fa( X ), Y = fa( Y );
    FA[X] = Y;
}

struct ee0{
    int u;
    int v;
    int w;
    inline bool operator < (const ee0 &B)const{
        return w > B.w;
    }
}e0[50005];

struct ee{
    int v;
    int w;
    int nxt;
}e[20005];
int h[10005],et=0;
inline void Add(int U,int V,int W){
    e[++et] = (ee){V,W,h[U]};
    h[U] = et;
}

int fi[10005][20],fv[10005][20],dep[10005];
bool vis[10005];
inline void dfs(int X,int FTHR){
    for(int i=h[X];i;i=e[i].nxt){
        if(vis[e[i].v]){
            continue;
        }
        vis[e[i].v]=1;
        fi[e[i].v][0]=X;
        fv[e[i].v][0]=std::min(fv[e[i].v][0],e[i].w);
        dep[e[i].v]=dep[X]+1;
        dfs(e[i].v,X);
    }
}

inline int lca(int X,int Y){
    dep[X]<dep[Y]?(X^=Y^=X^=Y):0;
    int ans=INF,dlt;
    if(X==Y){
        return 0;
    }
    for(dlt=15;dlt>=0;--dlt){
        if(dep[X]-(1<<dlt)>=dep[Y]){
            ans=std::min(ans,fv[X][dlt]);
            X=fi[X][dlt];
        }
    } 
    if(X==Y){
        return ans;
    }
    for(dlt=15;dlt>=0;--dlt){
        if(fi[X][dlt]!=fi[Y][dlt]){
            ans=std::min(ans,fv[X][dlt]);
            ans=std::min(ans,fv[Y][dlt]);
            X=fi[X][dlt],Y=fi[Y][dlt];
        }
    }
    ans=std::min(ans,fv[X][0]);
    ans=std::min(ans,fv[Y][0]);
    return ans;
}

void init(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;++i){
        scanf("%d%d%d",&e0[i].u,&e0[i].v,&e0[i].w);
    }
    for(int i=1;i<=n;++i){
        FA[i]=i;
        fv[i][0]=INF;
    }
    std::sort(e0+1,e0+1+m);
    for(int i=1;i<=m;++i){
        if(fa(e0[i].v)!=fa(e0[i].u)){
            Add(e0[i].u,e0[i].v,e0[i].w);
            Add(e0[i].v,e0[i].u,e0[i].w);
            mrg(e0[i].u,e0[i].v);
        }
    }
    for(int i=1;i<=n;++i){
        if(FA[i]==i){
            fi[i][0]=0;
            fv[i][0]=0;
            vis[i]=1;
            dfs(i,0);
        }
    }
    scanf("%d",&q);
    for(int j=1;j<=15;++j){
        for(int i=1;i<=n;++i){
            fi[i][j]=fi[fi[i][j-1]][j-1];
            fv[i][j]=std::min(fv[i][j-1],fv[fi[i][j-1]][j-1]);
        }
    }
    int u,v;
    for(int i=1;i<=q;++i){
        scanf("%d%d",&u,&v);
        if(fa(u)!=fa(v)){
            puts("-1");
            continue;
        }
        printf("%d\n",lca(u,v));
    }
}

int main(){
    init();
    return 0;
}